YANG AND HOSPEDALES: ZSDA VIA KERNEL REGRESSION ON THE GRASSMANNIAN 1 Zero-Shot Domain Adaptation via Kernel Regression on the Grassmannian
نویسندگان
چکیده
Most visual recognition methods implicitly assume the data distribution remains unchanged from training to testing. However, in practice domain shift often exists, where real-world factors such as lighting and sensor type change between train and test, and classifiers do not generalise from source to target domains. It is impractical to train separate models for all possible situations because collecting and labelling the data is expensive. Domain adaptation algorithms aim to ameliorate domain shift, allowing a model trained on a source to perform well on a different target domain. However, even for the setting of unsupervised domain adaptation, where the target domain is unlabelled, collecting data for every possible target domain is still costly. In this paper, we propose a new domain adaptation method that has no need to access either data or labels of the target domain when it can be described by a parametrised vector and there exits several related source domains within the same parametric space. It greatly reduces the burden of data collection and annotation, and our experiments show some promising results.
منابع مشابه
Zero-Shot Domain Adaptation via Kernel Regression on the Grassmannian
Most visual recognition methods implicitly assume the data distribution remains unchanged from training to testing. However, in practice domain shift often exists, where real-world factors such as lighting and sensor type change between train and test, and classifiers do not generalise from source to target domains. It is impractical to train separate models for all possible situations because ...
متن کاملUnifying Multi-domain Multitask Learning: Tensor and Neural Network Perspectives
Multi-domain learning aims to benefit from simultaneously learning across several different but related domains. In this chapter, we propose a single framework that unifies multi-domain learning (MDL) and the related but better studied area of multi-task learning (MTL). By exploiting the concept of a semantic descriptor we show how our framework encompasses various classic and recent MDL/MTL al...
متن کاملA Unified Perspective on Multi-Domain and Multi-Task Learning
In this paper, we provide a new neural-network based perspective on multi-task learning (MTL) and multi-domain learning (MDL). By introducing the concept of a semantic descriptor, this framework unifies MDL and MTL as well as encompassing various classic and recent MTL/MDL algorithms by interpreting them as different ways of constructing semantic descriptors. Our interpretation provides an alte...
متن کاملMulti-task Learning
In this paper, we provide a new neural-network based perspective on multi-task learning (MTL) and multi-domain learning (MDL). By introducing the concept of a semantic descriptor, this framework unifies MDL and MTL as well as encompassing various classic and recent MTL/MDL algorithms by interpreting them as different ways of constructing semantic descriptors. Our interpretation provides an alte...
متن کاملTransductive Multi-label Zero-shot Learning
Zero-shot learning has received increasing interest as a means to alleviate the often prohibitive expense of annotating training data for large scale recognition problems. These methods have achieved great success via learning intermediate semantic representations in the form of attributes and more recently, semantic word vectors. However, they have thus far been constrained to the single-label...
متن کامل